Copied to
clipboard

G = C24.432C23order 128 = 27

272nd non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.432C23, C23.646C24, C22.4192+ 1+4, C22.3182- 1+4, C23.88(C4○D4), (C2×C42).94C22, C23.4Q858C2, C23.34D454C2, (C23×C4).159C22, (C22×C4).205C23, C23.8Q8124C2, C23.7Q8103C2, C23.11D4107C2, C23.23D4.64C2, C23.10D4.56C2, (C22×D4).264C22, C24.C22156C2, C23.84C2310C2, C23.83C2398C2, C23.81C23109C2, C23.63C23162C2, C2.98(C22.45C24), C2.24(C22.54C24), C2.C42.350C22, C2.88(C22.33C24), C2.94(C22.36C24), C2.93(C22.47C24), (C2×C4).447(C4○D4), (C2×C4⋊C4).457C22, C22.507(C2×C4○D4), (C2×C22⋊C4).64C22, SmallGroup(128,1478)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.432C23
C1C2C22C23C24C23×C4C23.34D4 — C24.432C23
C1C23 — C24.432C23
C1C23 — C24.432C23
C1C23 — C24.432C23

Generators and relations for C24.432C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=bcd, f2=cb=bc, g2=b, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, ag=ga, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >

Subgroups: 468 in 224 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C23.7Q8, C23.34D4, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C23.10D4, C23.11D4, C23.81C23, C23.4Q8, C23.83C23, C23.84C23, C24.432C23
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.33C24, C22.36C24, C22.45C24, C22.47C24, C22.54C24, C24.432C23

Smallest permutation representation of C24.432C23
On 64 points
Generators in S64
(1 32)(2 54)(3 30)(4 56)(5 53)(6 29)(7 55)(8 31)(9 46)(10 22)(11 48)(12 24)(13 18)(14 49)(15 20)(16 51)(17 42)(19 44)(21 39)(23 37)(25 36)(26 63)(27 34)(28 61)(33 58)(35 60)(38 45)(40 47)(41 50)(43 52)(57 62)(59 64)
(1 60)(2 57)(3 58)(4 59)(5 28)(6 25)(7 26)(8 27)(9 51)(10 52)(11 49)(12 50)(13 47)(14 48)(15 45)(16 46)(17 39)(18 40)(19 37)(20 38)(21 42)(22 43)(23 44)(24 41)(29 36)(30 33)(31 34)(32 35)(53 61)(54 62)(55 63)(56 64)
(1 28)(2 25)(3 26)(4 27)(5 60)(6 57)(7 58)(8 59)(9 17)(10 18)(11 19)(12 20)(13 22)(14 23)(15 24)(16 21)(29 62)(30 63)(31 64)(32 61)(33 55)(34 56)(35 53)(36 54)(37 49)(38 50)(39 51)(40 52)(41 45)(42 46)(43 47)(44 48)
(1 7)(2 8)(3 5)(4 6)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 49)(18 50)(19 51)(20 52)(21 48)(22 45)(23 46)(24 47)(25 59)(26 60)(27 57)(28 58)(29 56)(30 53)(31 54)(32 55)(33 61)(34 62)(35 63)(36 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 42 5 16)(2 22 6 47)(3 44 7 14)(4 24 8 45)(9 32 39 53)(10 36 40 62)(11 30 37 55)(12 34 38 64)(13 57 43 25)(15 59 41 27)(17 61 51 35)(18 54 52 29)(19 63 49 33)(20 56 50 31)(21 28 46 60)(23 26 48 58)
(1 52 60 10)(2 37 57 19)(3 50 58 12)(4 39 59 17)(5 18 28 40)(6 11 25 49)(7 20 26 38)(8 9 27 51)(13 61 47 53)(14 29 48 36)(15 63 45 55)(16 31 46 34)(21 64 42 56)(22 32 43 35)(23 62 44 54)(24 30 41 33)

G:=sub<Sym(64)| (1,32)(2,54)(3,30)(4,56)(5,53)(6,29)(7,55)(8,31)(9,46)(10,22)(11,48)(12,24)(13,18)(14,49)(15,20)(16,51)(17,42)(19,44)(21,39)(23,37)(25,36)(26,63)(27,34)(28,61)(33,58)(35,60)(38,45)(40,47)(41,50)(43,52)(57,62)(59,64), (1,60)(2,57)(3,58)(4,59)(5,28)(6,25)(7,26)(8,27)(9,51)(10,52)(11,49)(12,50)(13,47)(14,48)(15,45)(16,46)(17,39)(18,40)(19,37)(20,38)(21,42)(22,43)(23,44)(24,41)(29,36)(30,33)(31,34)(32,35)(53,61)(54,62)(55,63)(56,64), (1,28)(2,25)(3,26)(4,27)(5,60)(6,57)(7,58)(8,59)(9,17)(10,18)(11,19)(12,20)(13,22)(14,23)(15,24)(16,21)(29,62)(30,63)(31,64)(32,61)(33,55)(34,56)(35,53)(36,54)(37,49)(38,50)(39,51)(40,52)(41,45)(42,46)(43,47)(44,48), (1,7)(2,8)(3,5)(4,6)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,49)(18,50)(19,51)(20,52)(21,48)(22,45)(23,46)(24,47)(25,59)(26,60)(27,57)(28,58)(29,56)(30,53)(31,54)(32,55)(33,61)(34,62)(35,63)(36,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,42,5,16)(2,22,6,47)(3,44,7,14)(4,24,8,45)(9,32,39,53)(10,36,40,62)(11,30,37,55)(12,34,38,64)(13,57,43,25)(15,59,41,27)(17,61,51,35)(18,54,52,29)(19,63,49,33)(20,56,50,31)(21,28,46,60)(23,26,48,58), (1,52,60,10)(2,37,57,19)(3,50,58,12)(4,39,59,17)(5,18,28,40)(6,11,25,49)(7,20,26,38)(8,9,27,51)(13,61,47,53)(14,29,48,36)(15,63,45,55)(16,31,46,34)(21,64,42,56)(22,32,43,35)(23,62,44,54)(24,30,41,33)>;

G:=Group( (1,32)(2,54)(3,30)(4,56)(5,53)(6,29)(7,55)(8,31)(9,46)(10,22)(11,48)(12,24)(13,18)(14,49)(15,20)(16,51)(17,42)(19,44)(21,39)(23,37)(25,36)(26,63)(27,34)(28,61)(33,58)(35,60)(38,45)(40,47)(41,50)(43,52)(57,62)(59,64), (1,60)(2,57)(3,58)(4,59)(5,28)(6,25)(7,26)(8,27)(9,51)(10,52)(11,49)(12,50)(13,47)(14,48)(15,45)(16,46)(17,39)(18,40)(19,37)(20,38)(21,42)(22,43)(23,44)(24,41)(29,36)(30,33)(31,34)(32,35)(53,61)(54,62)(55,63)(56,64), (1,28)(2,25)(3,26)(4,27)(5,60)(6,57)(7,58)(8,59)(9,17)(10,18)(11,19)(12,20)(13,22)(14,23)(15,24)(16,21)(29,62)(30,63)(31,64)(32,61)(33,55)(34,56)(35,53)(36,54)(37,49)(38,50)(39,51)(40,52)(41,45)(42,46)(43,47)(44,48), (1,7)(2,8)(3,5)(4,6)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,49)(18,50)(19,51)(20,52)(21,48)(22,45)(23,46)(24,47)(25,59)(26,60)(27,57)(28,58)(29,56)(30,53)(31,54)(32,55)(33,61)(34,62)(35,63)(36,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,42,5,16)(2,22,6,47)(3,44,7,14)(4,24,8,45)(9,32,39,53)(10,36,40,62)(11,30,37,55)(12,34,38,64)(13,57,43,25)(15,59,41,27)(17,61,51,35)(18,54,52,29)(19,63,49,33)(20,56,50,31)(21,28,46,60)(23,26,48,58), (1,52,60,10)(2,37,57,19)(3,50,58,12)(4,39,59,17)(5,18,28,40)(6,11,25,49)(7,20,26,38)(8,9,27,51)(13,61,47,53)(14,29,48,36)(15,63,45,55)(16,31,46,34)(21,64,42,56)(22,32,43,35)(23,62,44,54)(24,30,41,33) );

G=PermutationGroup([[(1,32),(2,54),(3,30),(4,56),(5,53),(6,29),(7,55),(8,31),(9,46),(10,22),(11,48),(12,24),(13,18),(14,49),(15,20),(16,51),(17,42),(19,44),(21,39),(23,37),(25,36),(26,63),(27,34),(28,61),(33,58),(35,60),(38,45),(40,47),(41,50),(43,52),(57,62),(59,64)], [(1,60),(2,57),(3,58),(4,59),(5,28),(6,25),(7,26),(8,27),(9,51),(10,52),(11,49),(12,50),(13,47),(14,48),(15,45),(16,46),(17,39),(18,40),(19,37),(20,38),(21,42),(22,43),(23,44),(24,41),(29,36),(30,33),(31,34),(32,35),(53,61),(54,62),(55,63),(56,64)], [(1,28),(2,25),(3,26),(4,27),(5,60),(6,57),(7,58),(8,59),(9,17),(10,18),(11,19),(12,20),(13,22),(14,23),(15,24),(16,21),(29,62),(30,63),(31,64),(32,61),(33,55),(34,56),(35,53),(36,54),(37,49),(38,50),(39,51),(40,52),(41,45),(42,46),(43,47),(44,48)], [(1,7),(2,8),(3,5),(4,6),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,49),(18,50),(19,51),(20,52),(21,48),(22,45),(23,46),(24,47),(25,59),(26,60),(27,57),(28,58),(29,56),(30,53),(31,54),(32,55),(33,61),(34,62),(35,63),(36,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,42,5,16),(2,22,6,47),(3,44,7,14),(4,24,8,45),(9,32,39,53),(10,36,40,62),(11,30,37,55),(12,34,38,64),(13,57,43,25),(15,59,41,27),(17,61,51,35),(18,54,52,29),(19,63,49,33),(20,56,50,31),(21,28,46,60),(23,26,48,58)], [(1,52,60,10),(2,37,57,19),(3,50,58,12),(4,39,59,17),(5,18,28,40),(6,11,25,49),(7,20,26,38),(8,9,27,51),(13,61,47,53),(14,29,48,36),(15,63,45,55),(16,31,46,34),(21,64,42,56),(22,32,43,35),(23,62,44,54),(24,30,41,33)]])

32 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4N4O···4T
order12···222224···44···4
size11···144444···48···8

32 irreducible representations

dim11111111111112244
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+42- 1+4
kernelC24.432C23C23.7Q8C23.34D4C23.8Q8C23.23D4C23.63C23C24.C22C23.10D4C23.11D4C23.81C23C23.4Q8C23.83C23C23.84C23C2×C4C23C22C22
# reps11122121111114831

Matrix representation of C24.432C23 in GL6(𝔽5)

010000
100000
004000
000400
000042
000001
,
400000
040000
001000
000100
000010
000001
,
100000
010000
001000
000100
000040
000004
,
100000
010000
004000
000400
000010
000001
,
040000
100000
002000
000200
000030
000032
,
200000
030000
002100
002300
000030
000003
,
200000
020000
004200
000100
000013
000004

G:=sub<GL(6,GF(5))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,2,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,3,0,0,0,0,0,2],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,2,2,0,0,0,0,1,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,3,4] >;

C24.432C23 in GAP, Magma, Sage, TeX

C_2^4._{432}C_2^3
% in TeX

G:=Group("C2^4.432C2^3");
// GroupNames label

G:=SmallGroup(128,1478);
// by ID

G=gap.SmallGroup(128,1478);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,784,253,344,758,723,100,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=b*c*d,f^2=c*b=b*c,g^2=b,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,a*g=g*a,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽